If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+52x-960=0
a = 4; b = 52; c = -960;
Δ = b2-4ac
Δ = 522-4·4·(-960)
Δ = 18064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18064}=\sqrt{16*1129}=\sqrt{16}*\sqrt{1129}=4\sqrt{1129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-4\sqrt{1129}}{2*4}=\frac{-52-4\sqrt{1129}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+4\sqrt{1129}}{2*4}=\frac{-52+4\sqrt{1129}}{8} $
| 7(x–8.2)=3x+19 | | 5x+8+8=12+7x | | -3k+2(5k-6)=-3k-39 | | X.x+10=200 | | 3.14x81=254.34 | | 2-x=1,104 | | n+2+2n=9-4n | | X+0.23x=80 | | 5x²-405=0 | | y=$2(1-20/100) | | 224=97-x | | 11y=14+9y | | 20q+7q+q-20q=32 | | 46x-42x-x+9x+9x=42 | | 33d-17d-11d-4d=37 | | 12+2=0.5h | | 4+14=-2(4x-9) | | 25r-9r+10r-13r=39 | | 47y-32y-5y+6y+9y=25 | | 23m-10m-3m-7m=33 | | 43u-40u+8u=33 | | 7m-5=-5-8m-m | | Y=260x+300 | | 48-(3c+4)=4(c+5+c | | 8x+7=12x+5 | | -17+29=2(x+5) | | |x-12|=10 | | 7(x+3)-8=13 | | x*2+10=4 | | x+3+6=27 | | 5(7x+7)+8=-202 | | 3=7x+1045 |